News and Features
-
Measuring defects to better understand quantum systems
A University of Chicago and Argonne National Laboratory team has uncovered new aspects of the spin dynamics of nitrogen vacancy centers in diamond — a discovery that will advance the development of quantum sensors. Read More
-
New diamond bonding technique a breakthrough for quantum devices
A team led by University of Chicago's Alex High have bonded crystalline membranes as thin as 100 nanometers while still maintaining a spin coherence suitable for advanced quantum applications. Read More
-
Making the atomic universe visible
Pennsylvania State University's Nitin Samarth is helping grow the capabilities of the Argonne Quantum Foundry. He’s also building a library of atom-scale materials for quantum technologies — and he’s sharing it with everyone. Read More
-
X-ray imagery of vibrating diamond opens avenues for quantum sensing
Scientists map atomic vibrations in diamond, linking them with the behavior of the quantum system embedded within. The work advances quantum sensors, which will be significantly more precise than today’s detection tools. Read More
-
New method could yield fast, cross-country quantum network
Scientists have struggled to come up with practical methods of building networks that can connect quantum computers. Now, researchers at the University of Chicago have proposed a new approach — building long quantum channels using vacuum sealed tubes with an array of spaced-out lenses. These vacuum beam guides would have ranges of thousands of kilometers and capacities of 10 trillion qubits per second, better than any existing quantum communication approach. Read More
-
‘Quantum optical antennas’ provide more powerful measurements on the atomic level
From the University of Chicago: Researchers have never been able to tap the potentially huge intensity enhancements of some “atomic antennas” in solid materials simply because they were solids. Now, a multi-institutional team led by the University of Chicago's Alex High has cracked this problem. They have used germanium vacancy centers in diamonds to create an optical energy enhancement of six orders of magnitude, a regime challenging to reach with conventional antenna structures. Read More
-
'Get entangled' with Eric Chitambar
At the University of Illinois Urbana-Champaign, theorist Eric Chitambar studies quantum communication. He is passionate about teaching and appreciates the strong collaborative spirit at UIUC, where his experimentalist colleagues help realize his group's ideas on hardware. Read More
-
Stanford scientists bring crystal clarity to diamond’s quantum signals
In work supported by the Q-NEXT quantum center, a Stanford University group digs into diamond to find the source of its apparently temperamental nature when it comes to emitting quantum signals, widening a path for building quantum networks and sensors. Read More
-
Quantum-themed LabEscape escape room a hit at the Chicago Comic & Entertainment Expo
The Q-NEXT quantum center brings the world’s only science-themed escape room to the Chicago Comic & Entertainment Expo, exposing hundreds of entertainment aficionados to the joys of science through puzzlement and play. Read More
-
UW–Madison scientists develop most sensitive way to observe single molecules
From the University of Wisconsin–Madison: A research team at the University of Wisconsin–Madison led by Q-NEXT collaborator Randall Goldsmith has developed the most sensitive method yet for detecting and profiling a single molecule — unlocking a new tool that holds potential for better understanding how the building blocks of matter interact with each other. The new method could have implications for pursuits as varied as drug discovery and the development of advanced materials. Read More
In the News
See all In the News-
Building the quantum economy - Chicago style
From HPCWire: HPCwire talks with Q-NEXT Director David Awschalom about the evolution of the quantum information technology market, the prospects for quantum computing sensing and communication, the Illinois Quantum and Microelectronics Park, current messaging on a quantum future, quantum startups, and the quantum workforce. Read More
-
So you want to build a quantum computer?
From Nextgov/FCW: For all the hype, funding and policy around quantum computing, there is still a lot of basic scientific research to be done to bring a quantum information system to life. Leading researchers at Argonne National Laboratory and Q-NEXT spoke with Nextgov/FCW about the… Read More
-
Giulia Galli wins Joseph O. Hirschfelder Prize in Theoretical Chemistry
From the University of Chicago Giulia Galli has been named the 2024-2025 Joseph O. Hirschfelder Awardee. The University of Wisconsin-Madison’s Theoretical Chemistry Institute awards the yearly prize for exceptional work in the field of theoretical chemistry. Four Nobel Prize recipients are among the Hirschfelder Prize… Read More
-
Durbin, Daines introduce bipartisan legislation to fund the future of quantum research at DOE
From the office of Senator Dick Durbin: U.S. Senate Majority Whip Dick Durbin (D-IL) and U.S. Senator Steve Daines (R-MT) on Aug. 1 introduced legislation to advance the United States’ capacity to invest in quantum information science and research and development through the U.S. Department… Read More
-
Samir Mayekar and Nadya Mason: The quantum revolution is coming to Illinois
From The Chicago Tribune: Following last week's announcement from the state of Illinois on the creation of the Illinois Quantum & Microelectronics Park in South Chicago, Q-NEXT collaborator Nadya Mason and Samir Mayekar, both of the University of Chicago, detail how Illinois is spurring the… Read More