Tohoku University
-
In novel quantum computer design, qubits use magnets to selectively communicate
Researchers have begun to use magnets to entangle qubits, the building blocks of quantum computers; the simple technique could unlock complex capabilities. Read More
In the News
See all In the News-
Molecular engineering and battery recycling: developing new technologies in quantum, medicine and energy
From the Physics World podcast: Nadya Mason, dean of the University of Chicago Pritzker School of Molecular Engineering, talks about how scientists are engineering molecules to develop next-generation quantum technologies, the challenges of quantum information research, and the quantum ecosystem. Read More
-
Quantum engineering with Jelena Vučković
On the Zero Knowledge podcast, Stanford University's Jelena Vučković discusses different quantum technology platforms, how researchers are developing chip-scale quantum systems, and the implications these technologies have for communication and cryptography. Read More
-
Boeing hits key milestone on path to quantum first in orbit
From Payload: HRL Laboratories has built a space-hardened quantum payload and demonstrated it on the ground — a key milestone in Boeing’s push to demonstrate the first quantum entanglement swap in space. Read More
-
Illinois, Taiwan partner to advance quantum, semiconductor technology
From the University of Illinois Urbana-Champaign: In a significant move to advance quantum and photonics technology, the University of Illinois Urbana-Champaign has launched an international collaboration with multiple Taiwanese institutions to develop silicon carbide-based semiconductor devices. The project, led by UIUC's Chris Anderson, brings together quantum technology expertise from UIUC and Taiwan's semiconductor manufacturing capabilities. Read More
-
Decoding the Universe: Quantum
From PBS' Nova: David Awschalom and Nadya Mason appear in PBS’s Nova: ‘Decoding the Universe: Quantum’. The episode takes the viewer through the quantum physics' important discoveries, discoveries that paved the way for the digital technologies we enjoy today – and the powerful quantum sensors and computers of tomorrow. Read More