Preparing for breakthroughs in quantum sensing

by Kent Irwin

Kent Irwin

We have a unique opportunity in quantum sensing because of Q-NEXT. This opportunity is presented by a combination of recent breakthroughs in our ability to control and manipulate quantum states, combined with Q-NEXT’s investment in infrastructure and projects to use entanglement in systems.

As we enter Q-NEXT’s second year, the Quantum Sensing (QS) Thrust is ramping up plans to leverage entanglement and squeezing for advantages at new frontiers of sensitivity, length scale and frequency scale.

The QS Thrust is pioneering quantum sensing in four focus areas:

Superconducting single-photon detection: the development of sensors with single-photon resolution for repeater-based quantum communication and other applications.

Quantum measurement protocols: the development and realization of algorithms and protocols for sensing that capitalize on innovations from the quantum-information community.

Quantum sensing at new length scales: Atomic-scale systems (atoms and solid state) can image down to nanometer scale and integrate into large-scale photonic networks.

Quantum sensing at new frequency scales: Coherent manipulation of signals including squeezing and entanglement over 12 orders of magnitude of frequency.

While there have been breakthroughs in quantum sensing over the last years, they have often been isolated to certain length scales and certain islands in frequency space (including microwave and optical circuit frequencies). Q-NEXT stands poised to capitalize on its investment by broadening and extending the impact of quantum sensing.

Over the past year, the groups in the QS Thrust have been preparing and ramping up their efforts. Headway has been made in entangling clocks, increasing the continuous count rate of single-photon detection, coherent manipulation of electromagnetic signals below microwave frequencies, understanding decoherence in NV centers, and entanglement and squeezing in atom interferometers and cold molecules, to name a few areas.

The QS Thrust’s goals will be achieved in large part through the use of the two quantum foundries at Argonne and SLAC for the manufacture of advanced quantum sensing system components. Also critical will be connections to the Extreme-Scale Characterization and Materials & Integration thrusts for development and characterization of needed devices and materials. Collaboration with the Quantum Simulations & Systems Thrust is needed for the development and implementation of quantum measurement protocols, and with the Communication Thrust especially in the area of single-photon detection.

We are just getting started, and as we coordinate our university, national laboratory, and industrial partners, the opportunities are exciting. We look forward to the next year of working with the Q-NEXT community.

Kent Irwin of Stanford University leads the Q-NEXT Quantum Sensing Thrust.

This work was supported by the DOE Office of Science National Quantum Information Science Research Centers.

News and features

See all news and features
  • Making the atomic universe visible

    Pennsylvania State University's Nitin Samarth is helping grow the capabilities of the Argonne Quantum Foundry. He’s also building a library of atom-scale materials for quantum technologies — and he’s sharing it with everyone. Read More

  • X-ray imagery of vibrating diamond opens avenues for quantum sensing

    Scientists map atomic vibrations in diamond, linking them with the behavior of the quantum system embedded within. The work advances quantum sensors, which will be significantly more precise than today’s detection tools. Read More

  • New method could yield fast, cross-country quantum network

    Scientists have struggled to come up with practical methods of building networks that can connect quantum computers. Now, researchers at the University of Chicago have proposed a new approach — building long quantum channels using vacuum sealed tubes with an array of spaced-out lenses. These… Read More

  • ‘Quantum optical antennas’ provide more powerful measurements on the atomic level

    From the University of Chicago: Researchers have never been able to tap the potentially huge intensity enhancements of some “atomic antennas” in solid materials simply because they were solids. Now, a multi-institutional team led by the University of Chicago's Alex High has cracked this problem. Read More

  • 'Get entangled' with Eric Chitambar

    At the University of Illinois Urbana-Champaign, theorist Eric Chitambar studies quantum communication. He is passionate about teaching and appreciates the strong collaborative spirit at UIUC, where his experimentalist colleagues help realize his group's ideas on hardware. Read More